发明 一种基于舆情大数据分析的多标签文本分类方法
大数据分析/舆情监控/深度学习 【大数据分析/舆情监控/深度学习】 3人
G06F16/33 G06F16/35 G06F40/211 G06F40/284 G06K9/62 G06N3/04 G06N3/08
摘要:本发明属于自然语言处理的文本分类领域,具体涉及一种基于舆情大数据分析的多标签文本分类方法,该方法包括:获取高校文本数据,根据高校文本数据构建拓扑图;将拓扑图输入到训练好的多标签文本分类模型中,得到高校文本数据的分类结果;所述多标签文本分类模型包括图卷积神经网络GCN和注意力残差网络;本发明采用GCN图卷积网络解决了从高校新闻评论数据错综复杂的信息结构中提取信息的困难,通过词句分级层次的对高校文本语料提取特征,充分挖掘文本词与词,句与句之间的文字内涵,同时为模型训练加入更加丰富的语料信息,对特征引入基于注意力的类残差融合,进一步分解文本对标签预测的影响。