发明 一种具有隐私保护的可验证多方k-means联邦学习方法
大数据挖掘/聚类算法/云服务器数据安全加密 【大数据挖掘/聚类算法/云服务器数据安全加密】 3人
G06F21/62 G06K9/62 G06N20/00
摘要:本发明涉及一种具有隐私保护的可验证多方k‑means联邦学习方法,属于数据挖掘技术领域。数据水平分布在多用户上,每个用户将各自的数据加密上传至云服务器;云服务器随机挑选初始聚心,利用安全乘法协议和安全距离计算协议计算数据和初始聚心的欧几里得距离的平方;云服务器利用安全位分解协议和安全比较协议进行距离比较,并对数据进行划分;各用户利用秘密共享协议更新聚类中心,加密后上传至云服务器;云服务器计算新聚类中心和原聚类中心的距离,如果小于阈值,则结束聚类操作,否则更新聚类中心进行下一次迭代。